Overview

The Active Suspension consists of three masses that along stainless steel shafts using linear bearings and is supported by a set of springs. The upper mass (blue) represents the vehicle body supported above the suspension, the middle mass (red) corresponds to one of the vehicle’s tires, and the bottom (silver) mass simulates the road. The upper mass is connected to a high-quality DC motor through a capstan to emulate an active suspension system that can dynamically compensate for the motions introduced by the road. The lower plate is driven by a powerful DC motor connected to a lead screw and cable transmission system.

  • Three high-resolution encoders used to measure positions of bottom and top masses as well as suspension deflection
  • 226 W MICROMO brushless DC motor connected to capstan for active suspension control
  • 70 W Magmotor brushed DC motor connected to belt-drive mechanism for road actuation
  • Adjustable weight and spring stiffness
  • Accelerometer measurements as sensory input
  • Responsive belt-drive mechanism to simulate the road surface
  • Accelerometer mounted on top plate to measure vehicle body acceleration
  • Limit switch and protection circuit
  • Double mass, spring, damper system analysis
  • Industry-relevant control requirements (ride comfort, suspension travel, road handling)
  • Derivation of dynamic model
  • State space representation
  • System transfer functions
  • Open-loop system analysis
  • Time-domain and frequency-domain open-loop and closed-loop system identification
  • Full-state/two state feedback LQR control design(with real-time control parameter tuning)
  • Full-state/two state feedback LQR controller (with real-time control/observer parameter tuning)
  • Observer design

The following additional components are required to complete your workstation, and are sold separately:

For Simulink

  • QUARC® add-on for MATLAB®/Simulink®
  • Quanser AMPAQ-L2 linear current amplifier
  • One of the following DAQ devices:
    • Quanser Q8-USB
    • Quanser QPIDe

For LabVIEW

  • Quanser Rapid Control Prototyping (Q-RCP) Toolkit® add-on for NI LabVIEW™
  • Quanser AMPAQ-L2 linear current amplifier
  • One of the following DAQ devices:
    • NI CompactRIO with two Quanser Q1-cRIO modules
    • Quanser Q8-USB
    • Quanser QPIDe

Product Details

Dimensions (W x L x H) 30.5 cm x 30.5 cm x 61 cm
Total mass 15 kg
Range of motion ± 22 mm (road), ±19 mm (tire), ± 25.4 mm (car)
Position resolution 0.002 mm/count (road), 0.005 mm/count (tire), 0.009 mm (car)
Stiffness adjustable from 0.4 to 2 N/mm
Excitation frequency up to 15 Hz
Resonant frequency configurable between 2 to 6 Hz
Accelerometer sensitivity 9.81 m/Vs²

Related Products