Overview

Same as the physical QUBE-Servo 2, the virtual system features a DC motor with the inertia disk and inverted pendulum modules. Rotary encoders measure the angular position of the DC motor and pendulum. The motor angular velocity is measured through a software-based tachometer.

  • High-fidelity, credible lab experiences equivalent to use of physical lab equipment
  • 12-month, multi-seat subscription
  • Full access to system parameters through MATLAB®/Simulink®
  • Comprehensive ABET-aligned curriculum mapped to popular control engineering textbooks

DC Motor (Inertia Disk) Module

Pendulum Module

  • Hardware integration
  • Filtering
  • Step response modeling
  • Block diagram modeling
  • Parameter estimation
  • Frequency response modeling
  • State-space modeling
  • Friction identification
  • Stability analysis
  • Second-order systems
  • Routh-Hurwitz stability
  • Nyquist stability
  • PD control
  • Lead Compensator
  • Proportional control
  • Steady-state error
  • Load disturbance
  • Robustness
  • Optimal control
  • Introduction to digital control
  • Discrete stability
  • Introduction to discrete control
  • Moment of inertia
  • Pendulum modeling
  • State-space modeling
  • Pendulum balance control
  • Swing-up control
  • LQR state-feedback balance control
  • Pole-placement state-feedback balance control

Product Details

App download & access to subscription management Quanser Academic Portal
App OS compatibility Microsoft Windows 10 or later
Required software Curriculum designed for MATLAB and Simulink R2021a or later, with compatibility with Python 3
Minimum system requirements Video Card: Intel HD 520 or equivalent DX11 GPU
Processor: Core i5-6300U series mobile CPU or equivalent
Memory: 8 GB RAM
Recommended system requirements Video Card: Intel UHD 620 or equivalent GPU
Processor: Core i7-8665U series mobile CPU or equivalent
Memory: 16 GB RAM

 

Related Products